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Heterotopic ossification (HO), the ectopic formation

of bone in soft tissues, is a relevant musculoskeletal

disorder that, by reduction of range of motion, may

lead to significant impairment of quality of live. HO

can either be acquired or hereditary. Acquired HO is

seen most often after hip prosthetic surgery and

pelvic trauma. In contrast, hereditary HO is com-

monly observed in the axial skeleton, but can affect

every joint. Substantial effort has been directed

towards understanding the pathophysiology and

towards finding both, effective prophylactic and ther-

apeutic treatments. Every improvement of the under-

standing of the pathophysiologic changes underlying

HO as well as the rationale of prophylactic and

therapeutic  treatment regimens in the end, is based

on the study of appropriate animal models. Although

intriguing models of ‘genetic‘ HO have been devel-

oped recently, their relevance to acquired HO

remains questionable.

As there is still neither proper treatment nor reliable

prophylaxis, animal models will remain important in

the study of HO. Currently, there are 6 different ani-

mal models regularly used for the study of acquired

HO. Some of these models can reflect a merely partic-

ular part of the disease. Hence, selection of the appro-

priate animal model for the study of HO is exceeding-

ly important. The present paper reviews the history

and major features of the different animal models of

acquired HO, and reveals some of the insights gained

through the study of animal models ; important bio-

chemical and pathophysiological key features are

highlighted. Clinical studies have proved indo -

metacine, celecoxib and radiation therapy to be effec-

tive in reducing the occurrence of HO, but not always

be able to prevent it.

INTRODUCTION

The first description of heterotopic ossification
(HO) goes back to a scientific contribution by Patin
in children suffering from ‘myositis ossificans pro-
gressiva‘ published in 1692 (68). Later, a more dis-
tinct description of HO was provided by Riedel
et al, as well as by Dejerine and Ceilier in 1883
and 1918, respectively (16,24,75). Although HO is
usually defined as a new formation of trabecular
bone including bone marrow in soft-tissues, where
bone usually does not occur (4,18), there is no con-
sensus on the name, definition and classification of
HO (64,103).

HO is no trivial disease ; the formation of hetero-
topic bone can lead to a limitation of the range of
motion and may have serious consequences for the
quality of life of patients (103).
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Two types of HO are distinguished : genetic and
acquired (87). Many authors suggest a similar patho-
genesis of genetically caused and acquired HO (1,

41,55,86,90). Genetically caused HO consists mainly
of two disorders, fibrodysplasia ossificans progres-
siva (fOP) (43) and progressive osseous heteropla-
sia (POH). Vast deposits of heterotopic bone char-
acterize these two entities with progressive accu-
mulation around several joints. This process even-
tually leads to severe disability and early death due
to pneumonia (56). A wealth of research has recent-
ly been done on the pathophysiology of fOP (42,110,

111). The genetic regulation of some bone morpho-
genetic proteins (BMP) and its inhibitory factors
were proven to be impaired, and suggested as a
major effector underlying genetically caused HO
(42,110,111). in contrast, the acquired form usually is
either precipitated by trauma or has a neurogenic
cause (87). HO may occur after virtually any type
of musculoskeletal trauma. The most common site
for the formation of HO is the pelvic bone after
open-reduction internal-fixation (ORif) for acetab-
ular fracture, followed by the hip after total hip
arthroplasty (THA) (2,4,8,27,77,78,95) ; but also after
orthopaedic procedures of the knee, shoulder or
elbow, and fractures, respectively. Even after joint
dislocation or direct soft tissue trauma, the forma-
tion of HO was observed (22,30,36). in contrast to the
hip and pelvis, abdominal incisions, wounds (spe-
cially war amputation wounds), the kidneys and the
gastrointestinal tracts are less commonly encoun-
tered sites of posttraumatic HO (20,32,37,65,71,72).
The other form of acquired HO (i.e. HO with neu-
rogenic cause) occurs after injury to the nervous
system, usually after traumatic brain injury or
spinal cord injury (20,67). Bone formation following
neurologic injury tends to form in para-articular
sites. The most commonly affected joint in neuro-
genic HO is the hip, followed by shoulder and
elbow. neurogenic HO rarely occurs around the
knee (21,38).

The incidence of HO after THA ranges between
16 and 53%, (103) but only a minority of the patients
becomes symptomatic (3-7%) (4,20). in contrast, the
incidence of HO following neurologic trauma is
reported to be 10-30% (92). in the prevention of HO
after THA, in patients with high risk, indomethacin,
celecoxibs and radiation are generally accepted as

the treatment of choice (4,76,103). in the prevention
of HO after neurologic trauma, much controversy
exists on the use of range-of-motion exercises (44,

53). Therapeutic options in HO are limited and a
high recurrence rate is observed. Currently the most
common treatment is surgical resection and radia-
tion therapy to prevent recurrence of HO (92).

As the pathophysiology of HO remains unclear,
the limited current available prophylactic and ther-
apeutic interventions appear to be neither sophisti-
cated nor always effective. Practically every better
understanding of the pathophysiologic changes
underlying HO and the rationale of prophylactic
and therapeutic treatment regimens owe their ori-
gins to the study of animal models. Animal models
reflecting pathophysiology, prevention and treat-
ment will thus play an important role in the
future (4). Currently 6 major animal models are
used. Here, we review their history and major
features including the respective advantages and
disadvantages. The most important insights gained
through the study of these animal models are high-
lighted as well.

ANIMAL MODELS

Achilles tenotomy model

The occurrence of HO in humans after achilles
tenotomy was first described by Jones in 1932 (39).
He observed painful ossifications in achilles ten-
dons 10 years or more after achilles tenotomy. This
observation presumably ended in the development
of an achilles tenotomy model in rats in 1953 (9).
Buck described a simple mid-way division of the
achilles tendon using a sharp razor blade after skin
incision and blunt dissection. Thereafter, only the
skin was closed, i.e. no adaptation of the tendon
ends using sutures. in this model, HO could be
shown in all specimens by the end of a three-
month-period (81).

in 1969, Salah was able to show that it isn’t nec-
essary to divide the achilles tendon. He observed
that the squeezing of the tendon with an artery for-
ceps also led to HO. furthermore, he demonstrated
that, when two ligatures are placed around the
achilles tendon, the segment between the ligatures
is gradually converted into a large ossicle (82). He
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also proved that no HO is formed when the calf
muscles are denervated. Therefore the pull of the
muscles on the achilles tendon seemed to be of
great relevance. in 1983, McClure wrote an article
that is judged as the standard work on the Achilles
tenotomy model. He applied the achilles surgery
described by Buck to mice and found that ectopic
bone developed in 60% of animals after 5 weeks
and in 100% after10 weeks (57). The advantages of
this model are its relative simplicity and excellent
predictability. However, the molecular mechanisms
of HO induced by Achilles tenotomy are poorly
understood, and the relevance to clinical conditions
is unclear since ectopic bone formation in the
achilles tendon is a rare condition in humans (40).
Recently this model is often used in rats and mice
to research different preventive strategies to reduce
the occurrence of HO formation (12,51,83,114,116).
The validity of these finding in comparison to
humans is however largely unclear. Also in the
pathogenetic research of HO this model is used
with the same limitations (40,52).

Immobilisation-manipulation (Michelsson) model

in 1980, Michelsson et al could show that the
repeated and intensified mobilization of the knee
joint in rabbits causes formation of HO in (rabbit)
quadriceps muscles (58). Michelsson developed a
model that was characterized by rabbit’s knee
immobilisation for 5 weeks with a plastic splint and
elastic bands. During this period, the splint was
removed each day and the knee was passively and
intensively mobilized for 5 minutes through the
full range of motion. After this 5-week period, the
splint was removed and animals were allowed to
move freely. During this experiment, HO was
seen radiographically in all animals at the end of
the 5-week period. further growth of HO could be
demonstrated after the 5 first weeks. in a second
publication in 1994, Michelson et al showed, by
placing a membrane between the quadriceps and
the femur, that isolation of bone from muscles pre-
vented the development of experimental callus-like
HO (59). Therefore, Hardy criticized in 1997 the
finding of Michelson arguing that it is not HO that
is seen in his model but a dystrophic calcification
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(33). in a reaction on this Michelson stated that bone
developed in the vastus intermedius muscle where
in normal circumstances no bone is found and that
therefore his findings should be called HO. This
discussion highlights the problems that arise from
the lack of a consensus on the definition of HO.
Since his publication in 1980 several authors have
used this model to study the development and pre-
vention of HO in rabbits (5,60,98,104,105). The first
sign of osteoblastic activity was seen in the perios-
teum, and the new bone was often formed in conti-
nuity with the periosteum. interestingly, early
changes in prostaglandins preceded bone formation
consistent with the hypothesis that inflammation is
the basis of the heterotopic bone formation in that
process (98). Although it seems that the interaction
between the periosteum and the necrotic muscle are
necessary for the formation of HO, since the intro-
duction of a plastic membrane between bone and
muscle prevents bone formation (59), the precise
inductive stimulus has not been identified in this
model. Therefore its relevance to human HO
remains unclear.

Implantation / injection models

The most commonly used animal models in the
research of possible therapy and prevention of HO
involve the surgical implantation of BMP con -
taining matrices or injection of BMP containing
substances at heterotopic sites (40). These models
have been employed for over 80 years. in 1938,
Levander was able to induce the formation of carti-
lage and bone in 23% of animals by injecting alco-
holic extracts of autologous bone into the rectus
femoris muscle of rabbits (3,48,49). Bertelsen (1940)
proved that alcoholic extracts of bone marrow
(83%) were superior to extracts of cortex, epyphisis
and periosteum (48%) (6). Lacroix (1945) obtained
bone with hematopoietic marrow with extracts of
epiphyses of new-born rabbits (45). He suggested
that the hypothetically inducing substance be
called ‘osteogenin’. Lagos (1946) and Heinen (1949)
challenged these findings by stating that the injec-
tion of alcohol alone had the same effect as inject-
ing an alcoholic bone extract (35,46). They therefore
denied the existence of a specific osteogenic sub-
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stance. in 1957 Danis found that after heterotopic
transplantation of bone marrow, bone was formed at
the site of heterotopic implantation (15). Chalmers,
Burnwell and friedenstein confirmed these findings
in 1959, 1964 and 1966, respectively (10,11,19). in
1965 Urist showed in different animals that samples
of diaphyseal decalcified bone implanted in a pouch
in the belly of a muscle gave rise to new bone for-
mation by what he called auto-induction (100). This
model of implanting demineralised bone matrix
into soft tissue was rapidly adopted by others and is
still used to research the induction of bone / HO in
soft tissue and how to prevent the formation of 
HO (11,14,17,54,61,97,117). Reddi (1972) charac-
terised this bone formation extensively and found
that it mirrors the normal process of in vivo carti-
lage and bone formation (74). Urist and collabora-
tors identified in 1979 the active component in the
bone extracts used in these early experiments and
named it bone morphogenetic protein (BMP) (101,

102). Wozney et al were able to repeat this experi-
ment using partially purified BMP proteins (108).
These experiments proved the existence of a specif-
ic osteogenic substance that Lacroix called
osteogenin (45). Currently, the most widely used
approach is BMP-matrigel implantation at hetero-
topic sides (25). Many modifications/variations of
this method have been used in different species
under different conditions to assess the pathogene-
sis and prevention of HO (31,34,47,62,88,89,106). in
recent experiments, transfection of BMP coding
genes into animal soft tissue is used to get a better
knowledge of the pathogenesis of HO and bone for-
mation in general. in these experiments adenovirus-
es, retroviral viruses, and plasmid particles contain-
ing BMP-genes (mostly BMP 2 or 4) are used to
induce HO (26,66,69,70,109). inhibitors of bone for-
mation as noggin and Gremlin are also injected in
this way to evaluate their function (23,99,115).

Another intriguing version of this model
researches the osteoinductive ability of certain bio-
materials, such as micro-porous calcium phosphate
ceramic particles, that do not release BMP or other
known osteogenic factors (63). The mechanism of
osteoinduction by such biomaterials is not current-
ly clear, although the geometry of the material is
thought to play an important role (40,112).
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Generally, heterotopic implantation / injection
models are straightforward, reliable, and mechanis-
tically relevant to human HO. However, certain
limitations do exist : (1) they are artificial systems
that may create non-physiologically high local con-
centrations of osteogenic factors at implanted sites
leading to effects not relevant to the human disor-
der, (2) the implantation is a local event and thus
has limited ability to mimic the potential effects of
the involvement of systemic factors.

Hip surgery (Schneider) model

Schneider et al described a model to simulate the
pathogenesis of HO after hip arthroplasty in
1998 (84). in this model, male new zealand rabbits
were treated similarly to human hip arthroplasty
using a standard approach anterolateral to the hip.
The left hip of the animals underwent muscle injury
by clamping to produce ischemia of gluteus max-
imus and medius muscles. The right hip underwent
no muscle injury and served as a control. The
medullary canal of the femur was opened and
reamed comparable to the implantation of a hip
prosthesis. The reaming-debris was left in situ. This
straightforward model was reported to produce HO
with high reliability in 17 of 18 animals with no sig-
nificant difference in amounts of bone formation
between muscle injury side and control side.

Rumi successfully used this model in 2005 to
assess the optimal timing of prophylactic preopera-
tive radiation and to identify the origin of osteo-
progenitor cells responsible for HO (79,80).

Toom et al used this model as described by
Schneider in rats to research the role of osteo -
progenitor cells from the femoral canal (96). in their
research, the induction of HO (without BMP-2
implants) was not successful. Only cartilage was
found in the examined samples. This is probably
because the animals were sacrificed at 3 and
21 days already. in contrast, as described in the
original publication, Schneider et al studied the
animals  radiographically after 1 to 7 months and
histologically after 7 months only (84). Using this
hip surgery model, Tannous et al proved that the
formation of bone in HO is endochondral. in this
experiment the first 21 days only cartilage was
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formed and only later this cartilage would calcify
and reorganise to lamellar bone (94). This model is
a mechanism-based model, reflecting a known
cause of HO in humans. it seems therefore a suited
model to study the formation of HO after THA.
Whether this model is also relevant to other forms
and causes of HO remains questionable.

Direct trauma models

Traumatic muscle injury can lead to bone forma-
tion in soft tissue of humans. McCarthy and
Sundaram (2005) termed this type of bone forma-
tion ‘myositis ossificans circumscripta’ (56). They
described it as a self-limiting disorder in which an
osseous mass develops close to bones and joints,
mostly initiated by a trauma and typically seen in
patients 15-30 years of age.

Efforts to establish trauma-induced models had
only limited success. Back in 1904, Haga and
fujimura reported to have evoked ossification in
traumatized animal tissue (29). Gruber challenged
this finding in 1913 by stating that Haga and
fujimura did not reveal their method nor their exact
results (28). in line with his criticism, Gruber self
failed to induce ossification in rabbit thigh muscle
using single hammer strikes. in 1926 Stone was
unable to detect ossification in dogs after striking
the anterior surface of the thigh during partial or
complete relaxation (91). Using a mini version of a
pile driver, zaccalini and Urist (1964) were not able
to induce HO in rabbit thigh (113) in an intriguing
study, Collins et al (1965) induced bone formation
by stripping the periosteum of the thigh bone and
damaging the overlying muscle (13). Ossification
was enhanced by repeated blunt trauma over the
thigh after injury. Walton et al (1983) reported the
induction of intramembranous ossification within
scar tissue in sheep following blunt trauma of the
thigh (107). The induction of ossification was only
successful in 16.6% of traumatized thighs, further,
intramembranous and not endochondral ossification
was the histological feature within scar tissue. More
recently Tannous et al induced heterotopic ossifica-
tion in rat in an extremity blast amputation
model (93). in this model extremity amputation was
produced through detonation of an explosive while

protecting the animal proximal to the specified
amputation level. This model was able to produce
HO with a good reliability (4/4 hind limb, 1/5 fore
limb) especially in hind limb amputations.

Based on the presented reports, we conclude that
most of the models described here do not seem to
be suffciently reliable to be routinely used. it
remains unclear whether the formation of bone as
described in these studies can be defined as HO.
The recent model of Tannous et al might be of rel-
evance to study the formation of HO after blast
amputation in war setting, as HO in the residual
limbs of combat-related amputees has been report-
ed in up to 63% of patients (71,93).

Irritant injection model

Heinen et al reported the induction of HO in rab-
bits by injection of 40 % ethanol (35). As the injec-
tion of various irritant substances into muscles was
reported to lead to the formation of HO, many trials
to identify further substances inducing HO were
undertaken. Selle and Urist for example reported
that acid-alcohol could induce HO in a small per-
cent of animals, while injections of calcium chlo-
ride led to calcification in soft tissue only (85).
Others used a mixture of phosphatase glycerophos-
phate and alginate gel (7). in contrast, in their search
to find a specific osteogenetic substance, alcoholic
subtracts of bone were used. in most of these publi-
cations, pure alcohol is used as a control, but no HO
formation was found (3,49,50,73). The insufficient
repeatability and questionable clinical relevance of
these models grossly limits their potential use.

CONCLUSION

Currently 6 animal models are known to mimic
HO. Most enable to reflect some forms, particular
aspects, or only distinct varieties of the human con-
dition. The questionable reliability and ambiguous
clinical relevance of most of the models complicate
their use in the search for prophylactic and thera-
peutic treatments for HO. Results of studies with
models with unknown relevance to the condition in
human should therefore be carefully examined, as
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conclusions and interpolation of the respective
results may not always be comparable to the human
condition. it is therefore the authors opinion that, in
order to get a full understanding of the pathogene-
sis of HO, more mechanism-based models as the
hip-surgery model and the extremity blast amputa-
tion model are needed. in the mean time, it remains
important to choose the right model that fits the
question asked in the study of HO and be aware of
its limitations when drawing conclusions towards
the human condition. 
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