Posterior lumbar interbody fusion (PLIF) with cages and local bone graft in the treatment of spinal stenosis


Published online: Aug 27 2006

Hans Trouillier, Christof Birkenmaier, Alexander Rauch, Christoph Weiler, Thomas Kauschke, Hans Jürgen Refior

From Franziskus Hospital Bielefeld, Germany, and Orthopaedic Clinic and Institute of Pathology, Ludwig - Maximilian University Munich, Germany

Abstract

Posterior lumbar interbody fusion (PLIF) implants are increasingly being used for 360° fusion after decompression of lumbar spinal stenosis combined with degenerative instability. Both titanium and PEEK (PolyEtherEtherKetone) implants are commonly used. Assessing the clinical and radiological results as well as typical complications, such as migration of the cages, is important. In addition, questions such as which radiological parameters can be used to assess successful fusion, and whether the exclusive use of local bone graft is sufficient, are frequently debated. We prospectively evaluated 30 patients after PLIF instrumentation for degenerative lumbar spinal canal stenosis, over a course of 42 months. In all cases, titanium cages and local bone graft were used for spondylodesis. The follow-up protocol of these 30 cases included standardised clinical and radiological evaluation at 3, 6, 12 and 42 months after surgery. Overall satisfactory results were achieved. With one exception, a stable result was achieved with restoration of the intervertebral space in the anterior column. After 42 months of follow-up in most cases, a radiologically visible loss of disc space height can be demonstrated. Clinically relevant migration of the cage in the dorsal direction was detected in one case. Based on our experience, posterior lumbar interbody fusion (PLIF) can be recommended for the treatment of monosegmental and bisegmental spinal stenosis, with or without segmental instability. Postoperative evaluation is mainly based on clinical parameters since the titanium implant affects the diagnostic value of imaging studies and is responsible for artefacts. The results observed in our group of patients suggest that local autologous bone graft procured from the posterior elements after decompression is an adequate material for bone grafting in this procedure.